# Evaluation of *P*-*V*-*T*-Composition Characteristics of Carbon Saturated Vapor

# M. M. Stevanović<sup>1</sup>

Received January 6, 1983

Volumetric behavior of carbon saturated vapor, in the temperature range 2500–3200 K, is described by two approaches: by the truncated form of the virial equation for the real monatomic gas and by the ideal gas equation of state for the mixture of present C<sub>i</sub> species. The literature data for C<sub>i</sub> partial pressure and  $\Delta_v H_{0,C_i}^0$  are analyzed through the comparison of the vapor pressure values deduced by the first approach with the data. New data for  $p_3$  and  $\Delta_v H_{0,C_3}^0$  are then evaluated. The values for carbon vapor pressure and saturated vapor molar volume calculated by two different approaches show remarkable agreement.

**KEY WORDS:** carbon; enthalpy of vaporization; vapor pressure; virial coefficient.

# **1. INTRODUCTION**

Carbon saturated vapor represents a mixture of molecular species  $C_i$ , with a different number of C atoms, i = 1, 2, 3, ... Up to 4000 K, the contribution by the species above  $C_5$  is quite negligible [1]. Due to pronounced dissociation and association, the virial coefficient formalism of a pure monatomic gas can be more appropriate for description of the volumetric behavior of such a system [2, 3] than the equation of state for the ideal gas mixture. We have described in two ways the volumetric behavior of carbon saturated vapor: by the truncated form of the virial equation of state (first approach) and by the ideal gas equation of state for the mixture of present molecular species ( $C_1$  to  $C_5$ ) (second approach).

In the first approach [4], which has not been applied earlier to the carbon saturated vapor, we evaluated the equations representing depen-

<sup>&</sup>lt;sup>1</sup>Materials Science Department, Boris Kidrič Institute of Nuclear Sciences, Vinča, Belgrade, Yugoslavia.

dence of the total carbon vapor pressure and to the second virial coefficient on temperature<sup>2</sup>

$$\ln \frac{P}{P^0} = 887.502 - \frac{229,701}{T} + 0.021521T - 110.54\ln T \tag{1}$$

$$B = -8.239 \times 10^{-12} \exp \frac{73,484}{T}$$
(2)

where T is in K and B is in  $m^3 \cdot mol^{-1}$ . These equations have been established for the temperature range 2500-3200 K, through an original numerical iterative procedure [4], based on the third and second law expressions for standard enthalpy of vaporization,  $\Delta_v H^0_{0,C_1}$ , developed by using the anticipated general expressions for P = f(T) (equation of the Rankin-Kirchoff type) and for B = f(T) (Woolley's exponential form [5]).

In our previous paper [4] we stated that, first, the use of Eqs. (1) and (2) in the calculation of the standard enthalpy of vaporization gives third and second law values that are close to each other, both in good agreement with the literature data [6–10]. Second, the obtained value of the B = f(T)subexponential parameter, b = 73,484, corresponds to the anticipated Woolley's theoretical model [5], the *bR* product being approximately equal to the standard enthalpy of carbon dimer dissociation ( $\Delta_d H_{0,C_2}^0$ ). Third, the values of carbon vapor pressure in the temperature range 2500–3200 K, calculated by Eq. (1), are lower then those based on the reported literature data (Fig. 1). Fourth, the established carbon vapor pressure temperature dependence (Eq. 1) gives for the sublimation temperature of carbon a value  $T_c = 4080$  K, which is close to the experimental one [6, 7] (Fig. 1).

The last established fact suggests that applicability of the evaluated carbon vapor pressure temperature dependence (Eq. 1) can be extended up to 4100 K, while all the cited statements lead to the conviction that the applied approach gives reliable results. In order to further check the validity of this approach, as well as of the obtained results, especially for the carbon vapor pressure, we have computed, in this work, relevant thermodynamic parameters of the carbon saturated vapor as an ideal gas mixture, using the ideal gas equation of state. Finally, we compared the results obtained by the two different approaches.

In this work we have also analyzed the literature values of the properties (partial pressure, enthalpy of vaporization) of molecular species

<sup>&</sup>lt;sup>2</sup>For an explanation of symbols, see nomenclature at the end of the article; standard pressure  $P^0 = 101,325$  Pa.



Fig. 1. Vapor pressure of carbon as a function of temperature.

present in the carbon saturated vapor and recalculated them for the  $C_3$  species. Since in the second approach the volumetric behavior of carbon saturated vapor is described by the ideal gas equation of state, the carbon vapor pressure is equated to the sum of equilibrium partial pressures of all the present molecular species,

$$P = \sum_{i=1}^{5} p_i \tag{3}$$

and the molar volume (volume per gram-atom) of saturated vapor is given

by the expression

$$v(II) = RT / \sum_{i=1}^{5} ip_i \tag{4}$$

while according to the first approach, the same quantity is equal to

$$v(I) = \frac{RT}{P} + B \tag{5}$$

## 2. CALCULATION OF THERMODYNAMIC PROPERTIES

In the presentation of the carbon vapor pressure as a sum of partial pressure, we started from the assumption that the values calculated by Eq. (1) are real and absolutely reliable. By comparing these values with the literature (lit) data [7–12], it can be said that they are (a) lower than the sum of partial pressure values,

$$P(\text{Eq. 1}) < \sum_{i=1}^{5} p_i(\text{lit})$$
 (6)

(b) higher than each particular partial pressure value for the  $C_1$ ,  $C_2$ ,  $C_4$ , and  $C_5$  species,

$$P(\text{Eq. 1}) > p_i(\text{lit})$$
  $i = 1, 2, 4, 5$  (7)

(c) lower than the literature values for the partial pressure of the  $C_3$  species,

$$P(\text{Eq. 1}) < p_3(\text{lit}) \tag{8}$$

and (d) higher than the value of the partial pressure sum, excluding  $p_2$  and  $p_3$ ,

$$P(\text{Eq. 1}) > \sum_{\substack{i=1\\i\neq 2,3}}^{5} p_i(\text{lit})$$
(9)

On this basis, we have pointed out that it is necessary to select among the published literature data the appropriate values for both  $p_2$  and  $\Delta_v H_{0,C_2}^0$ and to recalculate  $p_3$  and  $\Delta_v H_{0,C_3}^0$  values. We accepted as reliable the C<sub>1</sub>, C<sub>4</sub>, and C<sub>5</sub> partial pressure values, which can be computed from the JANAF tables [10] and satisfy the test of thermodynamic consistency,

130

#### P-V-T-Composition of Carbon Vapor

which implies that for temperature T = 2600, 2700, and 2800 K, the following identities are fulfilled:

$$\ln p_i(T) = \ln K_i - \frac{d_i}{T}$$
(10.1)

$$K_i = \exp\frac{\Delta_v S_{2700, C_i}^0}{R}$$
(10.2)

$$d_i = \frac{\Delta_v H_{2700,C_i}^0}{R}$$
(10.3)

$$\Delta_{v}H^{0}_{0,C_{i}} = \Delta_{v}H^{0}_{2700,C_{i}} - \Delta_{v}(H^{0}_{2700} - H^{0}_{0})C_{i}$$
(10.4)

$$p_i = P^0 \exp\left(\frac{\Delta_v H_{0,C_i}^0 - T\Delta_v \Phi_{C_i}}{RT}\right)$$
(10.5)

Here we have taken as appropriate  $p_2$  values that we have obtained through Eqs. (10.1)–(10.5), using  $(H_T^0 - H_0^0)$  and free energy function values for graphite and C<sub>2</sub> from the JANAF tables [10], and the value  $\Delta_v H_{2700,C_2}^0$ = 861.62 kJ · mol<sup>-1</sup> obtained by Zavitasanos in the experiments based on the combined Knudsen effusion and mass-spectrometry methods [11]. Among Zavitasanos's results, we have selected as the most appropriate the  $\Delta_v H_{T,C_2}^0$  value deduced from experiments with a pyrolitic graphite crucible, performed in a narrow temperature range (2700–2900 K). We have not accepted  $p_2$  and  $\Delta_v H_{0,C_2}^0$  values given in other publications [6–10], where the partial pressures sum, excluding  $p_3$ , is higher then P values from Eq. (1):

$$P(\text{Eq. 1}) < \sum_{\substack{i=1\\i\neq 3}}^{5} p_i(\text{lit})$$
(11)

By subtracting the appropriate  $p_1$ ,  $p_2$ ,  $p_4$ , and  $p_5$  values from the vapor pressure values computed by Eq. (1), we have estimated C<sub>3</sub> single partial pressure values for given temperatures:

$$p_3 = P(\text{Eq. 1}) - \sum_{\substack{i=1\\i\neq 3}}^{5} p_i$$
 (12)

For temperatures of 2600, 2700, and 2800 K, these values are used as the starting  $p_3$  values in the iterative procedure applied to evaluate both  $\Delta_v H_{0,C_3}^0$ 

and  $p_3$  values. The simple iterative procedure based on Eqs. (10.1)–(10.5) includes the following steps.

First, we get  $K_3$  and  $d_3$  values from the  $p_3$  starting values, obtained by Eq. (12), by applying the linear regression method by the expression (10.1):

$$\ln p_3 = \ln K_3 - \frac{d_3}{T}$$
(13)

Second, we calculate  $\Delta_v H_{0,C_3}^0$  with the obtained  $d_3$  value, using  $(H_T^0 - H_0^0)$ and free energy function data from ref. 13. Finally, we calculate  $p_3(T)$  set values by Eq. (10.5). The iteration was stopped when the correlation coefficient in Eq. (10.1) reached the value 0.99988. The calculated  $p_3$  values at 2600, 2700, and 2800 K gave for the C<sub>3</sub> vaporization standard enthalpy second and third law values of 917.528 and 917.494 kJ · mol<sup>-1</sup>, respectively (Table I). The values of  $p_3$  in the temperature range 2500–3200 K were calculated using the mean of these values. Carbon vapor pressure values were then obtained by Eq. (3) on the basis of  $p_3$  obtained above (Table II).

Calculations of the carbon vapor molar volume by Eq. (5) were extended from the saturation state [4] to the superheated state near the saturated region. With the values of v thus obtained, isobars for  $v = f(T)_P$ , showing the condensation boundary for precipitation of graphite, were constructed (Fig. 2). In the second approach we computed saturated vapor molar volume only for the temperature range 2500–3200 K through Eq. (4),

|                                                              | Molecular species/<br>thermodynamic functions [ref.] |                |                             |                |                |  |
|--------------------------------------------------------------|------------------------------------------------------|----------------|-----------------------------|----------------|----------------|--|
|                                                              | C <sub>1</sub>                                       | C <sub>2</sub> | C <sub>3</sub> <sup>a</sup> | C <sub>4</sub> | C <sub>5</sub> |  |
|                                                              | [10]                                                 | [10]           | [13]                        | [10]           | [10]           |  |
| $d_i$ (Eq. 10.1)(K <sup>-1</sup> )                           | 8.5766E04                                            | 1.0357E05      | 1.0603E05                   | 1.1399E05      | 1.1491E05      |  |
| K <sub>i</sub> (Eq. 10.1)                                    | 1.3958E08                                            | 5.4480E09      | 3.0780E10                   | 1.6563E10      | 4.7611E10      |  |
| $\Delta_{\rm e} S_{2700}^{0}$ (Eq. 10.1)                     | 653.12                                               | 780.78         | 839.43                      | 819.50         | 856.26         |  |
| $(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$ |                                                      |                |                             |                |                |  |
| $\Delta_{\nu} S_{2700}^{0}$ (table value)                    | 652.96                                               | 780.82         | 840.86                      | 819.50         | 856.98         |  |
| $(J \cdot mol^{-1} \cdot K^{-1})$                            |                                                      |                |                             |                |                |  |
| $\Delta_{\rm p} H_{2700}^0$ (Eq. 10.3)                       | 713.841                                              | 861.623        | 882.020                     | 948.271        | 955.761        |  |
| $(kJ \cdot mol^{-1})$                                        |                                                      |                |                             |                |                |  |
| $\Delta_{v}H_{298}^{0}({ m II})$                             | 715.968                                              | 876.050        | 917.528                     | 971.063        | 979.236        |  |
| $(kJ \cdot mol^{-1})$                                        |                                                      |                |                             |                |                |  |
| $\Delta_{v}H_{298}^{0}(\mathrm{III})$                        | 715.813                                              | 876.046        | 917.494                     | 971.180        | 979.629        |  |
| $(kJ \cdot mol^{-1})$                                        |                                                      |                |                             |                |                |  |

Table I. Thermodynamic Consistency Test Data

<sup>a</sup> Data for C<sub>3</sub> species are computed through the described numerical procedure.

132

| ial Pressure and Carbon Vapor Pressure | es) for Various Temperatures (in K) |  |
|----------------------------------------|-------------------------------------|--|
| species Par                            | onless Valu                         |  |
| Molecular S                            | <sup>0</sup> Dimensic               |  |
| Table II.                              | (P/P)                               |  |
|                                        |                                     |  |

|                                                                      |                                                | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | A DECEMBER OF |            | and the second |            |            |            |
|----------------------------------------------------------------------|------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------|------------|------------|------------|
|                                                                      | 2500                                           | 2600                                     | 2700                                                                                                            | 2800       | 2900                                                                                                             | 3000       | 3100       | 3200       |
| $p_1$ [10]                                                           | 1.7610E-07                                     | 6.5897E-07                               | 2.2359E-06                                                                                                      | 6.9527E-06 | 1.9977E-05                                                                                                       | 5.3468E-05 | 1.3419E-04 | 3.1770E-04 |
| $P_2$ [11]                                                           | 5.5272E-09                                     | 2.7274E-08                               | 1.1926E-07                                                                                                      | 4.9635E-07 | 1.6767E-06                                                                                                       | 5.4966E-06 | 1.6673E-05 | 4.7074E-05 |
| <i>p</i> <sub>3</sub> (Eq. 12)                                       | 1.3483E-08                                     | 6.5212E-08                               | 2.9459E-07                                                                                                      | 9.9800E-07 | 3.5824E-06                                                                                                       | 1.2409E-05 | 4.1540E-05 | 1.3392E-04 |
| <i>p</i> <sub>3</sub> (Eq. 10)                                       | 1.1745E-08                                     | 6.0012E-08                               | 2.7179E-07                                                                                                      | 1.1047E-06 | 4.0767E-06                                                                                                       | 1.3790E-05 | 4.3133E-05 | 1.2557E-04 |
| P4 [10]                                                              | 2.6007E-09                                     | 1.5031E-09                               | 7.6389E-09                                                                                                      | 3.4458E-08 | 1.4029E-07                                                                                                       | 5.1742E-07 | 1.7518E-05 | 5.4754E-04 |
| $P_5$ [10]                                                           | 5.1637E-09                                     | 3.0433E-09                               | 1.5641E-08                                                                                                      | 7.1513E-08 | 2.9371E-07                                                                                                       | 1.0954E-06 | 3.7438E-04 | 1.1810E-05 |
| p (Eq. 1)                                                            | 1.9589E-07                                     | 7.5600E-07                               | 2.6731E-06                                                                                                      | 8.5260E-06 | 2.5670E-05                                                                                                       | 7.2980E-05 | 1.9790E-04 | 5.1580E-04 |
| p (Eq. 3)                                                            | 1.9408E-07                                     | 7.5080E-07                               | 2.6503E-06                                                                                                      | 8.6328E-06 | 2.6171E-05                                                                                                       | 7.4171E-05 | 1.9866E-04 | 5.0352E-04 |
| $\delta(\%)^a$                                                       | 0.87                                           | 0.69                                     | 0.86                                                                                                            | 1.25       | 1.93                                                                                                             | 1.89       | 0.85       | 1.62       |
| $^{a} \delta = \left(1 - \frac{P(\mathbf{E})}{P(\mathbf{E})}\right)$ | $\left(\frac{q. 3}{q. 1}\right) \times 100\%.$ |                                          |                                                                                                                 |            |                                                                                                                  |            |            |            |

## P-V-T-Composition of Carbon Vapor

133



Fig. 2. Molar volume of carbon as a function of temperature.

| Temperature<br>(K) | v(l)      | $v(\Pi)_{1}{}^{a}$ | $v(\Pi)_2^a$ | δ <sub>1</sub> <sup>b</sup><br>(%) | δ2 <sup>b</sup><br>(%) |
|--------------------|-----------|--------------------|--------------|------------------------------------|------------------------|
| 2500               | 9.2834E05 | 8.8840E05          | 9.9889E05    | 4.50                               | 3.15                   |
| 2600               | 2.4220E05 | 2.2954E05          | 2.3378E05    | 4.38                               | 3.48                   |
| 2700               | 6.8281E05 | 6.3971E04          | 6.5277E04    | 6.31                               | 4.40                   |
| 2800               | 2.1213E04 | 2.0196E04          | 1.9645E04    | 4.79                               | 7.98                   |
| 2900               | 6.8650E03 | 6.4195E03          | 5.3363E03    | 6.49                               | 7.70                   |
| 3000               | 2.3030E03 | 2.2564E03          | 2.1740E03    | 2.02                               | 5.60                   |
| 3100               | 7.8270E02 | 8.0113E02          | 7.8934E02    | 2.35                               | 0.85                   |
| 3200               | 2.7550E02 | 2.9387E02          | 3.0234E02    | 6.67                               | 9.75                   |

Table III. Carbon Saturated Vapor Molar Volume (m<sup>3</sup>mol<sup>-1</sup>)

<sup>a</sup> In the calculation of  $v(II)_1$  the  $p_3$  value computed by Eq. (12) is used, while in the calculation of  $v(II)_2$  the  $p_3$  value from the described numerical procedure is used.

$${}^{b}\delta = \left(1 - \frac{v(\mathrm{II})}{v(\mathrm{I})}\right) \times 100\%.$$

using as  $p_3$  values first the values obtained by Eq. (12) and then values calculated in this work (Table III).

### 3. DISCUSSION

The carbon vapor pressure calculated by Eq. (3) as a sum of partial pressures, using the  $p_3$  values evaluated by the described procedure and appropriate  $p_1$ ,  $p_2$ ,  $p_4$ , and  $p_5$  values (Fig. 3), has a value equal to the carbon vapor pressure computed by Eq. (1), i.e., deviations of the two computed values do not exceed 2.0% (Table II). The obtained condensation boundary for precipitation of graphite is shifted towards lower temperatures and higher molar volume in comparison with the results in ref. 6 (Fig. 2). This, however, as expected since our carbon vapor pressure values are higher. The condensation boundary calculated by Eq. (4) (second approach), using  $p_3$  values obtained by Eq. (12), as well as those evaluated by the applied procedure, coincides with the evaluated through Eq. (5) (first approach). Deviations of v(II) from v(I) are less than 7% when  $p_3$  values from Eq. (12) are used. In the case when v(II) is calculated with  $p_3$  deduced by the applied numerical procedure, these deviations do not exceed 10% (Table III).

The established agreement between the values for the carbon vapor pressure, as well as for the saturated molar volume, calculated by two approaches, therefore, proves the validity of the procedure used in the first approach. These agreements can also be used as a proof of reliability of the evaluated equations expressing dependence of the second virial coefficient and carbon vapor pressure on temperature, as well as of reliability of all the obtained results.

Unreliability of the literature values for both  $\Delta_v H_{0,C_3}^0$  and  $p_3$  has long been an unsolved problem [6]. The recalculation of the C<sub>3</sub> thermodynamic functions [13, 14] and the reevaluation of  $p_3$  and  $\Delta_v H_{0,C_3}^0$  values performed by Meyer and Lynch [12] on the basis of new estimated values of conversion factors (of ion intensity to partial pressure) are contributions to the solution of this problem, but not a definite answer. Zavitasanos, who presents different  $\Delta_v H_{0,C_3}^0$  third and second law values, accepts the possibility that the second law values are influenced by the temperature dependence of the ionization cross-section. One of the reasons for uncertainty of  $\Delta_v H_{0,C_3}^0$  published results is the fact that  $\Delta_v H_{T,C_3}^0$  and  $\Delta_v G_{T,C_3}$  are highly dependent on temperature (more than the corresponding thermodynamic properties of other C<sub>i</sub> species [10, 13]). Therefore we selected as appropriate a  $\Delta_v H_{2700,C_2}^0$  value obtained from measurements in a narrow temperature range, and we performed  $\Delta_v H_{0,C_3}^0$  optimization over a temperature range of 200 K.

The literature data for  $p_3$ , as well as those for  $\Delta_v H^0_{0,C_3}$ , remain doubtful



Fig. 3. Arrhenius plot of the appropriate partial pressure of  $C_i$  species.

after comparison of the carbon vapor pressure values derived by the first approach with the literature data for the partial pressure of molecular species present in the carbon saturated vapor. The procedure used in our calculations of new values of  $\Delta_v H_{0,C_3}^0$  and  $p_3$  is indeed intermediary, but ensures thermodynamic consistency of all the obtained thermodynamic data for C<sub>3</sub> (Table I), i.e., identity of  $\Delta_v S_T^0$  values deduced from  $p_3$  evaluated values and those obtained from  $S_T^0$  table data [13], as well as full agreement between  $\Delta_p H_{0,C}^0$ , third and second law values.

## 4. CONCLUSIONS

Temperature dependence of carbon vapor pressure and the second virial coefficient, deduced by the approach treating carbon saturated vapor as monatomic particles in real gas, are used for calculation of carbon vapor pressure and vapor molar volume values in the temperature range 2500–3200 K. In order to check the validity of this approach and of the obtained results, the same thermodynamic characteristics of the carbon saturated vapor have also been determined by the approach in which volumetric behavior is described by the equation of state for the ideal gas mixture.

Viewing the literature data for  $C_3$  species partial pressure and standard vaporization enthalpy as doubtful, a new value for  $\Delta_v H_{0,C_3}^0 = 917.11 \text{ kJ} \cdot \text{mol}^{-1}$  has been derived. With  $p_3$  values calculated by using this value together with the anticipated partial pressure values for other  $C_i$  species, the carbon vapor pressure is calculated as a sum of partial pressures. Thus obtained values are equal to that of the carbon vapor pressure evaluated by the first approach described above. Molar volumes of the carbon saturated vapor computed by the two applied approaches agree within the limits of 10%. The established agreement of the carbon vapor pressure and saturated vapor molar volume values is a proof of the validity of the procedure used in the first approach, as well as of the reliability of the obtained results.

## NOMENCLATURE

- P pressure, vapor pressure
- $p_i$  partial pressure
- V volume
- v molar volume
- T temperature
- G Gibbs function
- H enthalpy
- S entropy
- R gas constant
- B second virial coefficient
- b subexponential parameter of virial coefficient temperature dependence
- $\Phi$  free energy function,  $-(G_T^0 H_0^0)/T$

## Superscript

0 standard state

## Subscripts

- d dissociation
- *i* molecular species
- 0 reference temperature
- v vaporization

## REFERENCES

- S. J. Stricker and K. S. Pituer, in *Molecular Orbitals in Chemistry and Biology*, B. Pulman, P.-O. Löwdin, eds. (Academic Press, New York, 1964), p. 255.
- 2. M. M. Stevanović, Int. J. Thermophys. 3:157 (1982).
- 3. J. E. Kilpatrick, Annu. Rev. Phys. Chem. 7:10 (1956).
- 4. M. M. Stevanović, J. D. Jovanović, and A. N. Mihajlov, 8th Eur. Conf. Thermophys. Prop., Baden Baden (1982); High Temp.-High Press. (in press).
- 5. H. Woolley, J. Chem. Phys. 21:236 (1953).
- 6. H. B. Palmer and M. Shelef, Chem. Phys. Carbon 4:85 (1968).
- 7. N. A. Gokcen, E. T. Cheng, T. M. Poston, and D. J. Spencer, *High. Temp. Sci.* 8:81 (1976).
- 8. J. Drowarth, R. P. Burns, G. DeMaria, and M. G. Inghram, Phys. Rev. 31:1131 (1976).
- 9. A. N. Nesmeyanov, Vapor Pressure of the Chemical Elements (Elsevier, Amsterdam, 1963), p. 449.
- 10. JANAF Thermochemical Tables, D. R. Stull and H. Prophet, eds. (National Reference Data Service, U.S. Nat. Bur. Stand., 1971).
- 11. P. D. Zavitasanos and G. A. Carlson, J. Chem. Phys. 39:2966 (1973).
- 12. R. T. Meyer and A. W. Lynch, High Temp. Sci. 5:192 (1973).
- 13. V. P. Gluško, L. V. Gurevič, G. A. Bergman, I. V. Veyc, V. A. Medvedev, G. A. Hackurzo, and B. C. Yungman, *Termodinamičesie svoistva individalnyh veščestv* (Nauka, Moscow, 1979), Vol. 2.
- 14. H. L. Strauss and E. Theile, J. Chem. Phys. 46:2473 (1967).